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Abstract

This paper addresses the problem of building large-scale geometric maps if indoor
environments with mobile robots. It poses the map building problem as a con-
strained, probabilistic maximum-likelihood estimation problem. It then devises a
practical algorithm for generating the most likely map from data, along with the
most likely path taken by the robot. Experimental results in cyclic environments
of size up to 80 by 25 meter illustrate the appropriateness of the approach.
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1 Introduction

Over the last two decades or so, the problem of acquiring maps in large-scale
indoor environments has received considerable attention in the mobile robotics
community. The problem of map building is the problem determining the location
of entities-of-interest (such as: landmarks, obstacles), often in a global frame of
reference (such as a Cartesian coordinate frame). To build a map of its environment,
a robot must know where it is relative to past locations. Since robot motion is
inaccurate, the robot must solve a concurrent localization problem, whose difficulty
increases with the size of the environment (and specifically with the size of possible
cycles therein). Thus, the general problem of map building is an example of a
chicken-and-egg problem: To determine the location of the entities-of-interest, the
robot needs to know where it is. To determine where it is, the robot needs to know
the locations of the entities-of-interest.

In our experiments, we investigates a restricted version of the map building
problem, in which a human operator tele-operates the robot through its envi-
ronment. In particular, we assume that the operator selects a small number of
significant places (such as intersections, corners, dead ends), where he pushes
(with high likelihood) a button to inform the robot that such a place has been
reached. The approach, however, can be applied to the problem of landmark-based
map acquisition (using one of the many landmark recognition routines published
in the literature). Thus, the paper phrases the approach in the language commonly
used in the field of landmark-based navigation. The general problem addressed in
this paper is: How can a robot construct a consistent map of an environment, if
it occasionally observes a landmark? In particular, the paper addresses situations
where landmarks might be entirely indistinguishable, and where the accumulated
odometric error might be enormous.

The paper presents an algorithm for landmark-based map acquisition and con-
current localization that is based on a rigorous statistical account on robot motion
and perception. In it the problem of map building is posed as a maximum likelihood
estimation problem, where both the location of landmarks and the robot’s position
have to be estimated. Likelihood is maximized under probabilistic constraints
that arise from the physics of robot motion and perception. Following [12, 24],
the high-dimensional maximum likelihood estimation problem is solved efficiently
using the Baum-Welch (or alpha-beta) algorithm [22]. Baum-Welch alternates an
“expectation step” (E-step) and a “maximization step” (M-step, sometimes also
called “modification step”). In the E-step, the current map is held constant, the
probability distributions are calculated for past and current robot locations. In the
M-step, the most likely map is computed based on the estimation result of the E-
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step. By alternating both steps, the robot simultaneously improves its localization
and its map, which leads to a local maximum in likelihood space. The probabilistic
nature of the estimation algorithm makes it considerably robust to ambiguities and
noise, both in the odometry and in perception. It also enables the robot to revise
past location estimates as new sensor data arrives.

The paper also surveys results obtained with a RWI B21 robot in indoor envi-
ronments of size 80 by 25 meter. One of the environments contains a cycle of size
60 by 25 meter, which has been mapped successfully despite significant odometric
error. The approach has been integrated with a conventional method for building
occupancy grid maps [27], for which results are reported as well. Related work is
reviewed in Section 8.

2 The Probabilistic Model

This section describes our probabilistic model of the two basic aspects involved in
mapping: motion and perception. These models together with the data (see next
section) define the basic likelihood function, according to which maps are built.

2.1 Robot Motion

Let ¢ and &' denote robot locations in z-y-6 space, and let v denote a control
(motion command), which consists of a combination of rotational and translational
motion. Since robot motion is inaccurate, the effect of a control % on the robot’s
location £ is modeled by a conditional probability density

P(¢'|u,§) M

which determines the probability that the robot is at location &', if it previously
executed control u at location £. P(&'|u,€) imposes probabilistic constraints
between robot positions at different points in time. If P(&) is the probability
distribution for the robot’s location before executing an control u,

PE) = [PElg P d @

is the probability distribution after executing that control. Figure 1 illustrates the
motion model. In Figure la, the robot starts at the bottom location (in a known
position), and moves as indicated by the vertical line. The resulting probability
distribution is shown by the grey values in Figure la: The darker a value, the
more likely it is that the robot is there. Figure 1b depicts this distribution after
two motion commands. Of course, Figure 1 (and various other figures in this
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Figure 1: Probabilistic model of robot motion: Accumulated uncertainty after
moving as shown: (a) 40 meter, (b) 80 meter.

paper) show only 2D projections of P(¢), as P(£) is three-dimensional. Note that
the particular shape of the distributions results from accumulated translational and
rotational error as the robot moves.

Mathematically speaking, the exact motion model assumes that the robot ac-
cumulates both translational and rotational error as it moves. Both sources of error
are distributed according to a triangular distribution, that is centered on the zero-
error outcome.! The width of these distributions are proportional to the length of
the motion command. Of course, the resulting distribution in z-y-6 space is not
triangularly distributed, as the curvature in Figure 1a indicates.

2.2 Robot Perception

Our approach assumes that the robot can observe landmarks. More specifically,
we assume that the robot is given a method for estimating the type, the relative
angle and an approximate distance of nearby landmarks. For example, such
landmarks might be Choset’s “meet points” [6] (see also Kuipers’s and Matari¢’s
work [13, 18]), which correspond to intersections or dead ends in corridors and
which can be detected very robustly. Various other choices are described in [1].
In our probabilistic framework, landmarks are not necessarily distinguishable;
in the most difficult case, landmarks are entirely indistinguishable. It is also
assumed that the perceptual component is erroneous—the robot might misjudge

the angle, distance, or type of landmark. Thus, the model of robot perception is

'The density function of a triangular distribution centered on u and with width ¢ is given by
f(z) = max{0,0~" — =|z — ul}.
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Figure 2: Probabilistic model of robot perception: (a) uncertainty after sensing a
landmark in 5 meter distance, (b) the corresponding map.

modeled by a conditional probability:
P(o|¢, m). (3)

Here o denotes a landmark observation, and 7 denotes the map of the environment
(which contains knowledge about the exact location of all landmarks). P(o|¢, m)
determines the likelihood of making observation o when the robot is at location &
according to the model m.

The perceptual model imposes probabilistic constraints between the map, m,
and the robot’s location, £. According to Bayes rule, the probability of being at &
when the robot observes o is given by

P(ol¢, m) P(]m)

J P(ol¢’,m) P(¢'|m) d¢’
= 1 P(ol¢,m) P({|m) (4)

Here P(£|m) measures the probability that the robot is at £ prior to observing o
and 7 is a normalizer that ensures that the left-hand probabilities in (4) sum up to
1. Equation (4) implies that after observing o, the robot’s probability of being at &
is proportional to the product of P(£|m) and the perceptual probability P (o[, m).

Figure 2a illustrates the effect of Equation (4) for a simple example. Shown
there is the distribution P(£|o, m) that results, if the robot initially has no knowledge
as to where it is (i.e., P(&|m) is uniformly distributed), and if it perceives a
landmark approximately 5 meters ahead of it, in a world m that contains exactly
two indistinguishable landmarks. This world is shown in Figure 2b. The circles in
Figure 2a indicate that the robot is likely to be approximately 5 meter away from
a landmark—although there is a residual non-zero probability for being at other

P(¢lo,m)
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location, since the robot’s perceptual routines might err. If the landmark were
distinguishable, the resulting density (Figure 2a) would consist of a single circle,
instead of two.

Notice that although the perceptual model P(o|¢, m) assumes exact knowledge
of both the robot’s location and its environment (which makes it easy to derive),
the estimation according to equation (4) does not assume knowledge of £. It only
assumes knowledge of the map m.

3 Maximum Likelihood Estimation

The key idea is to build maps from data by maximizing the likelihood of the map
under the data. The data is a sequence of control interleaved with observations.
Without loss of generality, let us assume that motion and perception are alternated,
i.e., that the data available for mapping is of the form

d = {0 M o 4@ T 4D oTh 3)

T denotes the total number of steps.

The estimation algorithm alternates two different estimation steps, the E-step
and the M-step. In the E-step, probabilistic estimates for the robot’s locations at
the various points in times are estimated based on the currently best available map
(in the first iteration, there is none). In the M-step, a maximum likelihood map
is estimated based on the locations computed in the E-step. The E-step can be
interpreted as a localization step with a fixed map, whereas the M-step implements
a mapping step which operates under the assumption that the robot’s locations (or,
more precisely, probabilistic estimates thereof) are known. Iterative application
of both rules leads to a refinement of both, the location estimates and the map.
We believe that this algorithm can be shown to converge to a local optimum in
likelihood space.

3.1 The E-Step

In the E-step, the current-best map m and the data are used to compute proba-
bilistic estimates P(£(*)|d, m) for the robot’s position £() at t = 1,...,T. With
appropriate assumptions, P(£(!)|d, m) can be expressed as the normalized product
of two terms

P(EV]d, m)
= P(§(t)|0(l),...,o(t),u(t"'l),...,o(T),m)
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@ P, .. t>|g<t 1)o@, m) POl ..., oD, m)

®) M P(o(l) |§ ,m) P (f( )|u(t+1) ...,o(T),m)

© P(g<f)|o<1) o® m) P(oW, ..., 00m) P(ED D .. o) m)

= g3 P(£®W[o() o® m)j PED Do) m) 6)
:=a?) :=ﬁ6

Here 71, 12, 73 are normalizers that ensure that the left-hand side of Equation
(6) sums up to one. The derivation of (6) follows from (a) the application of
Bayes rule, (b) a commonly-used Markov assumption that specifies the conditional
independence of future from past data given knowledge of the current location and
the map, and (c) a second application of Bayes rule under the assumption in the
absence of data, robot positions are equally likely.

Both terms, ozg) and ﬁét), are computed separately, where the former is com-
puted forward in time and the latter is computed backwards in time. The reader
should notice that our definition of ozg) and ﬁét) deviates from the definition usu-
ally given in the literature on Hidden Markov Models (c.f., [22]). However, our
definition maps nicely into existing localization paradigms. The computation of
the a-values is a version of Markov localization, which has recently been used
with great success by various researchers [3, 10, 12, 20, 25, 28]. The 3-values add
additional knowledge to the robot’s position, typically not captured in Markov-
localization. They are, however, essential for revising past belief based on sensor
data that was received later in time, which is a necessary prerequisite of building
large-scale maps.

3.1.1 Computation of the o-Values
Since initially, the robot is assumed to be at the center of the global reference frame,

aél) is given by a Dirac distribution centered at (0,0, 0):

W~ pe® _ | 1,0 =(0,0,0)
Qe - P(§ |d7m) - {07 lff(l)#(0,0,0) )

All other ozg) are computed recursively:

o) = PEVD,... 0o, m)
= 7 PV, o, ul "D, m) PED]o®,... ul"D, m)
P(O(t)l€(t),m) P(g(t)lo(l),“'7u(t—1)’m) ®)
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where 7 is again a probabilistic normalizer, and the rightmost term of (8) can be
transformed to

P(f(t)|o(1), ot m)
- / PED]t=D, @Dy pet=D|o® . ot=1) ) det=1)

= /P(f(t)lu(t“l),f(t“l)) a?“l) dé-(t—l) ©

Substituting (9) into (8) yields a recursive rule for the computation of all ag) with
boundary condition (7), which uses the data d, the model m, in conjunction with
the motion model P(¢’|u, &) and the perceptual model P(£|o, m). See [26] for a
more detailed derivation.

'3.1.2 Computation of the 3-Values

The computation of ﬂét) is completely analogous, but backwards in time. The
initial ﬂéT), which expresses the probability that the robot’s final position is &

is uniformly distributed (ﬁéT) does not depend on data). All other $-values are
computed in the following way:

,Bét) = P(f(t)[u(t), oy oD m)
— /p(g(f)|u(t),§(t+1)) PEED oD o) ) dgt+D)

= /P(f(“’l)[u(’), ¢y
P(f(t+1)|0(t+l), e O(T), m) df(t-H)

(10)
The rightmost expression is further transformed to:
PEED oD o) m)
= 7 P(o(t“)lf(t“),u(t“),,__,O(T),m) P(E(Hl)lu(t“),...,a(T),m)
= 7 P(O(t+1)|f(t+1),m) ﬁét+1) (11)

The derivation of the equations are analogous to that of the computation rule for

a-values. The result of the E-step, a'g) -6 ét) , 18 an estimate of the robot’s locations
at the various points in time ¢.
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Figure 3: A typical sequence of /3-tables (projected into 2D), taken from one
of the experiments reported in this paper, illustrates the complex nature of the
distributions involved.

Figure 3 shows a sequence of 3-values, which arose in one of the experiments
described below. This figure illustrates that some of the distributions are multi-
modal; Kalman filters, which are frequently used in localization, are probably not
appropriate here.

In the first computation of the E-step, where no map m is available, P(o|¢, m) is
assumed to be distributed uniformly. This is equivalent to ignoring all observations
{00, 0@, ... 0oT)} in the computation of the a- and S-values. The resulting
position estimates are only based on the controls {u(!), «(®, .. u{T-1} in d.

3.2 The M-Step

The M-step computes the most likely map based on the probabilities computed in
the E-step.

Without loss of generality, we assume that there are n different types of land-
marks (for some value n), denoted /4, ...,[l,,. Theset L = {ly,...,1,,[.} is the
set of generalized landmarks types, which includes /., the “no-landmark.” A prob-
abilistic map of the environment is an assignment of probabilities P(m., = [)
for [ € L, where (z,y) is a location measured in global coordinates, and m,
is a random variable that corresponds to the generalized landmark type at (z, y).

The M-step computes the most likely map under the assumption that ozg) - B g)

accurately reflects the likelihood that the robot was at ¢() at time .
Following [22], the maximum likelihood map under fixed position estimates is
computed according to the weighted likelihood ratio

Expected # of times [ was observed at (z, y)
Expected # of times something was observed (z, y)

P(mgy, = 1|d)



A Probabilistic Approach for Concurrent Map Acquisition and Localization 9

which is obtained by
3 [ Pliney = 10,60) af5(" de®
P(mgy =1ld) = —= (12)
S / P(imey = o, £0) ol de®
t=10'eL
where

(t) = (t) s (t)
P(ma:y — lIO(t),f(t)) _ P(O ’ml‘y lvf )P(ma:y llé )

T Y P(0Wmygy =1, E0) P(mg, = 1¢0)
l'elL

(13)

Since we assume that m,,, does not depend on the robot’s position £ (and hence in
the absence of data: P(mgy = [|{) = P(mg, = l'|§) VI,I' € L), expression (13)
can be simplified to

p(o(t)|m$y =1, 5(0)
S P(o®|my, = 1, €0)

l'eL
= 1 P(0W|my, =1,¢0) (14)

P(mxy = l|0(t)’5(t)) =

Here 7 is the usual normalizer. While these equations look complex, they basically
amount to a frequentist maximum-likelihood estimation (also called: counting).
Equation (12) counts how often the generalized landmark / was observed for
location (z, y), divided by the number some generalized landmark was observed
for that location. Each count is weighted by the probability that the robot’s was at
a location ¢ where it could observe something about (z, y). Frequency counts are
maximum likelihood estimators. Thus, the M-step determines the most likely map
from the position estimates computed in the E-step. By alternating both steps, both
the localization estimates and the map are gradually improved (see also [22]).

4 Efficiency Considerations

In our implementation, all probabilities are represented by discrete grids. Thus,
all integrals are replaced by sums in all equations above. Maps of size 90 by 90
meter with a spatial resolution of 1 meter and an angular resolution of 5° were used
throughout all experiments reported here. Our implementation employs a variety
of “tricks” for efficient storage and computation:
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e Caching. The motion model P(¢|u,£’) is computed in advanced for each
control in d and cached in a look-up table.

o Exploiting symmetry. Symmetric probabilities are stored in a compact
manner.

e Coarse-grained temporal resolution. Instead of estimating the location
at each individual micro-step, locations are only estimated if at least one
landmark has been observed, or if the robot moved 20 meter. In between,
position error is interpolated linearly.

e Selective computation. Computation focuses on locations £ whose prob-
ability P(¢) is larger than a threshold: P(¢) must be larger or equal to
.001 max,s P(¢').

e Selective memorization. Only a subset of all probabilities are stored for
each P(&), namely those that are above the threshold described above. This
1is currently implemented with a generalized version of bounding boxes.

These algorithmic “tricks” were found to lower memory requirements by a factor
of 2.98 - 102 (in our largest experiment) when compared to a literal implementation
of the approach. The computation was accelerated by a similar factor.

All experimental results described below were obtained on a 200Mhz Pentium
Pro equipped with 64mb RAM in less than two hours per run. On average,
the computation of a probability P(¢(*)—which includes the computation of the
corresponding o~ and 3-table—took less than 10 seconds for the size environments
considered here. Data collection required between 15 and 20 minutes for each
dataset. The (worst-case) memory complexity and computational complexity are
linear in the size of d and in the size of the environment.

5 Results

The approach was tested using a B21 mobile robot, manufactured by Real World
Interface, Inc (see Figure 4). Data was collected by joy-sticking the robot through its
environment and using odometry (shaft encoders) to re-compute the corresponding
control. While joy-sticking the robot, a human chose and marked a collection of
significant locations in the robot’s environment (which roughly corresponded to
the meet-points described in [6]). These were used as landmarks. To test the most
difficult case, we assumed that the landmarks were generally indistinguishable.
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Figure 4: The RWI B21 robot used in our research.

Figure 5a shows one of our datasets, collected in our university buildings. The
circles mark landmark locations. What makes this particular environment difficult
is the large circular hallway (60 by 25 meter). When traversing the circle for the
first time, the robot cannot exploit landmarks to improve its location estimates;thus,
it accumulates odometric error. As Figure 5a illustrates, the odometric error is quite
significant; the final odometric error is approximately 24.9 meter. Since landmarks
are indistinguishable, it is difficult to determine the robot’s position when the circle
is closed for the first time (here the odometric error is larger than 14 meter). Only
as the robot proceeds through known territory it can use its perceptual clues to
estimate where it is (and was), in order to build a consistent map.

Figure 6a shows the maximum likelihood map along with the estimated path of
the robot. This map is topologically correct, and albeit some bents in the curvature
of the corridors (to avoid those, one has to make further assumptions), the map is
indeed good enough for practical use. This result demonstrates the power of the
method. In a series of experiments with this dataset, we consistently found that
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Figure 5: (a) Raw data (2,972 controls). The box size is 90 by 90 meters. Circles
indicate the locations where landmarks were observed. The data indicates system-
atic drift, in some of the corridors. The final odometric error is approximately 24.9
meter. (b) Occupancy grid map, constructed from sonar measurements.

@

Figure 6: (a) Maximum likelihood map, along with the estimated path of the robot.
(b) Occupancy grid map constructed using these estimated locations.

the principle topology of the environment was already known after two iterations
of the Baum-Welch algorithm; after approximately four iterations, the location of
the landmarks were consistently known with high certainty. ‘

The result of the estimation routine can be used to build more accurate oc-
cupancy grid maps [7, 19]. Figure 6b shows an occupancy grid map constructed
from sonar measurements (using a ring of 24 Polaroid sonar sensors), using the
guessed maximum likelihood positions as input to the mapping software described
in [27]. In comparison, Figure 5b shows the same map using the raw, uncorrected
data. The map constructed from raw data is unusable for navigation, whereas the
corrected map is sufficient for our current navigation software (see [3, 28] for a



A Probabilistic Approach for Concurrent Map Acquisition and Localization 13

(@

©

Figure 7: Even in this simple case (small cycle, only minor odometric error), our
approach improves the quality of the map: (a) raw data, (b) occupancy grid map
built from raw data, (c) corrected data, and (4) the resulting occupancy grid map.

description of the navigation routines).

Figures 7 to 11 show the map at different stages of the data collection. Figure
7 shows results for mapping the small cycle in the environment. Here most
published methods should work well, since the odometric error is considerably
small. The quality of the occupancy grid map benefits from our approach, as
shown in Figure 7b&d. In particular, the corrected occupancy grid map (Figure
7d) shows an obstacle on the right that is missing in the map constructed from raw
data). The importance of revising past location estimates based on data collected
later in time becomes more apparent when the robot maps the second circle in
the environment. Here the odometric error is quite large (more than 14 meter).
Figure 8-11 shows consecutive results after observing the 15th, 16th, 17th, and 20th
landmark, respectively. While the maximum likelihood is topologically incorrect
in the first two Figures, with 17 observations or more the most likely map is
topologically correct. We conjecture that any incremental routine that does not
revise past location estimates would be bound to fail in such a situation.
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Figure 8: After observing the 15th landmark, the most plausible map is topologi-
cally incorrect, due to string odometric error. (a) Raw data, (b) Map and estimated
trajectory, (c) occupancy grid map. The irregular dark areas in (b) indicate that the
approach assigns high probability to several locations for the last step.

Figures 12 and 13 show results obtained in a different part of the building.
In this run, one of the corridors was extremely populated, as the “fuzziness” of
the occupancy grid map suggests. The floor material in both testing environments
consisted of carpet and tiles.

After convergence of the Baum-Welch algorithm, the # values demonstrate
nicely the connection of the current approach and Markov localization. This is
because the (-values globally localize the robot (with d in reverse order): The
final value, ﬂ(T), is uniformly distributed, indicating that in the absence of any
sensor data the robot’s location is unknown. As 7', decreases, an increasing
number of observations and controls are incorporated into the estimation. Figure
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Figure 9: After observing the 16th landmark, the most plausible map is topologi-
cally still incorrect.

14 shows an example, obtained using the second dataset. Here the last four 5-tables
(ﬁ(24) ey ﬂ(ﬂ)) are shown, after convergence of the map building algorithm. The
final value, 3(24), which is shown on the left in Figure 14, is uniformly distributed.
With every step in the computation the uncertainty is reduced. After three steps, the
approach has already uniquely determined the robot’s position with high certainty
(rightmost diagram). The « values, in contrast, effectively track a robot’s position
under the assumption that the initial position is known.
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Figure 10: After observing the 17th landmark, our approach finds a topologi-
cally correct map. From this point on, the maximum likelihood map is always
topologically correct.

6 Application

The mapping algorithm was successfully employed in a practical problem, involv-
ing the fast acquisition of a map for a museum. In the past [8], we successfully
deployed a robot in the “Deutsches Museum Bonn,” with the task of engaging
people and providing interactive guided tours through the museum. During six
days of operation, the robot entertained and guided more than 2,000 visitors of the
museum, and an additional 600 “virtual” that commanded the robot through the
Web. During those tours, it traversed approximately 18.5 km at an average speed of
approximately 36.6 cm/sec. The reliability of the robot in reaching its destination
was 99.75% (averaged over 2,400 tour goals).

One of the bottlenecks of this installation was the requirement for accurate
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Figure 11: The map obtained after observing the 20th landmark is topologically
correct. ’

maps. Our navigation software [28] requires highly accurate maps for reliable
navigation. In fact, the map used in this exhibition was acquired by hand, and it
took as approximately a week of (quite painful) tape-measuring, interleaved with
data collection and tedious hand-tuning of the map, to come up with an accurate
map. Accurate maps were of uttermost importance, since the robot had to be able
to navigate even in extremely crowded environments (see Figure 15), while at the
same time a large number of obstacles were practically “invisible” to the robot’s
sensors (such as glass cages). In fact, three of the seven collision that our robot
encountered during the exhibition were caused by inaccuracies in the map, which
we than manually improved after the fact.

The current approach has already been useful in this context. We are currently
installing a similar tour-guide in the Carnegie Museum of Natural Science in Pitts-
burgh, PA. Figure 16 shows a raw dataset, collected in the “Dinosaur Hall” of that
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Figure 12: (a) A second dataset (2,091 controls, box size 90 by 90 meter), and (b)
occupancy grid map, constructed from sonar measurements.

(@)

Figure 13: (a) Maximum likelihood map, along with the estimated path of the
robot, and (b) the resulting occupancy grid map.
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Figure 14: The last four 3-tables (324, ..., 3(2)) after convergence. Here the
circle marks the location of the robot, which is being estimated. See text.
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Figure 15: The robotic tour-guide in action, in the “Deutsches Museum Bonn.” To
navigating safely through dense crowds while avoiding collisions with “invisible”
obstacles (such as a metal plate shown in the center of this image) required accurate
maps. The area in (a) measures only 60 by 60 meters, and the total map is only
approximately 45 meter long.

museum. The Dinosaur Hall is significantly smaller than our testing environments.
It is about 45 meter long, and the area shown in Figure 16a measures only 60 by 60
meters. The dataset was collected in less than 15 minutes: In about 3 minutes, we
marked nine locations on the museum’s floor using tape, and in an additional 11
minutes we joy-sticked the robot through the museum, pressing a button whenever
ittraversed one of the markers. We did not measure anything by hand (of course, the
relative location of the markers to each other is estimated by the algorithm; it does
not have to be measured manually). The final odometric error is approximately
25.1 meter and almost 90 degrees.

In approximately 41 minutes of computation (on a busy Pentium PC), our
approach generated the map shown in Figure 17. While this map is not perfect, it is
sufficient for navigation (once we draw in “invisible” obstacles by hand). Thus, our
approach reduced the time to acquire a map from approximately a week to an hour
or so. This is important to us since in the past we have frequently installed robots at
various sites, often at conferences (most recently at IICAI-97 in Japan), where time
pressure prohibits modeling environments by hand. We conjecture that similar time
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Figure 16: Raw data collected in the Carnegie Museum of Natural History of
Natural Science in Pittsburgh, PA.

Figure 17: The corrected map of the Carnegie Museum of Natural History of
Natural Science is good enough for the robotic tour-guide.

savings can be achieved in installing robots in other indoor environments, such as
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Figure 18: Towards multiple robot mapping: Here a second dataset is integrated
into the first dataset in the museum. The relative location of the second set with
respect to the first is unknown. (a) Raw data, (b) result after a single iteration (less
than 2 minutes computation), (c1)-(c5) The alpha values (in the first iteration of the
estimation algorithm) demonstrate the localization under global uncertainty. After
only four iterations, the robot knows with fairly high confidence where it is.

hospitals [11].

7 Suitability for Collaborative Multi-Robot Mapping

Multi-robot collaboration is a topic that is currently gaining significant attention
in the scientific community (see e.g., [17, 21]). A sub-problem of multi-robot
collaboration is multi-robot map acquisition. In the most general problem, one
would like to place robots at arbitrary locations in an unknown environment and
have the robots build a single, consistent map thereof. In the most difficult case,
the relative location of the robots to each other is unknown. Thus, to build a single
map, the robots have to determine their position relative to each other, .i.e., there
is a global localization problem.

As noticed above, our approach is a generalization of Markov localization,
which has been demonstrated to localize robots globally [3]. To cope with multiple
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robots whose relative location is unknown, our basic approach has to be extended
slightly. In particular, the initial position of the second robot relative to the first
one is unknown. Thus, the initial belief P(¢(%)), and hence o”), is initialized
uniformly for the second robot (and in fact, every other robot but the first). As in
the single-robot case, the initial position of the first robot is defined as (0, 0,0),
and o”) is initialized using a Dirac distribution (c.f,, Equation (7). With this
extension, our approach is fit for collaborative multi-robot map acquisition.

To evaluate our approach empirically, we collected a second dataset in the
Carnegie Museum of Natural Science. This dataset is shown in Figure 18a. Strictly
speaking, this dataset was collected with the same robot. However, there is no
difference to a dataset collected with a different robot of the same type, so that the
results should directly transfer over to the multi-robot case.

Figure 18b shows the resulting position estimates after a single iteration of

" the EM algorithm, if the map generated using the first dataset is used as an initial

map (shown in Figure 17a). After a single iteration, which requires less than
two minutes of computation time, the robot has correctly determined its position
relative to the first robot (with high confidence), and the resulting map incorporates
observations made by both robots. Figures 18c1-c5 illustrate the efficiency with
which the robot localizes itself relative to the existing map. Here the first alpha
values, agl), 0422), ceey ags)’ are depicted, in the first iteration of EM. Initially, after
incorporating a single observation, the robot does not yet know where it is, but
it assigns high likelihood to positions that were previously marked in the map.
After only four steps, the robot knows where it is, as indicated by the unimodal
distribution in 18c4. Not shown in Figure 18 are the corresponding 3-values. After
computing and incorporating those, the robot knows with high certainty where it
was for any point in time.

The availability of an initial map greatly improves the computational efficiency
of the approach. Our approach required 1 minute and 57 seconds for estimating
the location of the robot when the previously acquired map was used, for a dataset
that took 12 minutes and 19 seconds to collect. Thus, once a map is known, our
approach appears to be fast enough to localize and track a robots as they move.

8 Related Work

Over the last decade, there has been a flurry of work on map building for mobile
robots (see e.g., [5, 14, 23, 27]). As noticed by Lu and Milios [15], the dominating
paradigm in the field is incremental: Robot locations are estimated as they occur;
the majority of approaches lacks the ability to use sensor data for revising past
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location estimates. A detailed survey of recent literature on map building can be
found in [27]. The approach proposed there, however, is also incremental and
therefore incapable of dealing with situations such as the ones described in this
paper.

Recently, several groups have proposed algorithms that revise estimates back-
wards in time. Koenig and Simmons investigated the problem under the assumption
that an topologically correct sketch of the environment is available, which simpli-
fies the problem somewhat [12]. They proposed a probabilistic framework similar
to the one described here, which also employs the Baum-Welch algorithm for esti-
mation. Shatkay and Kaelbling [24] generalized this approach for mapping in the
absence of prior information. Their approach consults local geometric information
to disambiguate different locations. Both approaches differ from ours in that they
build topological maps. They do not explicitly estimate global geometric infor-
mation (i.e., z-y-0 positions). As acknowledged in [24], the latter approach fails
to take the cumulative nature of rotational odometric error into account. It also
violates a basic “additivity property” of geometry (see [24]). Even in the absence
of odometric error, it is unclear if the approach will always produce the correct
map. :

Lu and Milios [15, 16] have proposed a method that matches laser scans
into partially built maps, using Kalman filters for positioning. Together with
Gutmann [9], they have demonstrated the appropriateness of this algorithm for
mapping environments with cycles. Their approach is incapable of representing
ambiguities and multi-modal densities. It can only compensate a limited amount
of odometric error in z-y-space, due to the requirement of a “sufficient overlap
between scans” [15]. In all cases studied in [9, 15, 16}, the odometric error was an
order of magnitude smaller than the one reported here. In addition, the approach
is largely specific to robots equipped with laser range finders. It is unclear if the
approach can cope with less accurate sensors such as sonars.

To the best of our knowledge, the problem of multi-robot map acquisition has
not been investigated before.

The approach proposed in this paper also relates to work in the field of Markov
localization, which requires a map to be given. Recently, Markov Jocalization has
been employed by various groups with remarkable success [3, 10, 12, 20, 25, 28].
In our own work, Markov localization played a key role in a recent installation in
the Deutsches Museum Bonn, where one of our robots provided interactive tours
to visitors. In more than 18.5km of autonomous robot navigation in a densely
crowded environment (top speed 80 cm/sec, average speed 36 cm/sec), Markov
localization was absolutely essential for the robot’s safety and success [8]. The
method proposed here directly extends this approach. In future installations of the
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tour-guide robot, maps do not have to be crafted manually but can now be generated
by joy-sticking a robot through its environment. This will reduce the installation
time from several days to only a few hours.

9 Discussion

This paper proposed a probabilistic approach to building large-scale maps of indoor
environments with mobile robots. It phrased the problem of map building as
a maximum likelihood estimation problem, where robot motion and perception
impose probabilistic constraints on the map. It then devised an efficient algorithm
for maximum likelihood estimation. Simplified speaking, this algorithm alternates
localization and mapping, thereby improving estimates of both the map and the
robot’s locations. Experimental results in large, cyclic environments demonstrate
the appropriateness and robustness of the approach.

The basic approach can be extended in several interesting directions.

The current approach is “passive”, i.e., it does not restrict in any way how the
robot is controlled. Thus, the approach can be combined with one of the known
sensor-based exploration techniques. We have already integrated the approach with
our previously developed algorithm for greedy occupancy-grid-based exploration
described in [2, 27, 28] (see also [29]); however, no systematic results are available
at this point in time. Another possibility, which has not yet been implemented,
would be to combine the current approach with Choset’s sensor-based covering
algorithm [6].

Our current implementation also relies on humans to identify landmarks. While
this is reasonable when mapping an environment collaboratively with a human, it
is impractical if the robot is to operate autonomously. The lack of a landmark-
recognizing routine is purely a limitation of our current implementation, not of the
general algorithm. Recent research on landmark-based navigation has produced
a large number of methods for recognizing specific landmarks (see, e.g., [1]). In
particular, Choset’s sensor-based covering algorithm [6] automatically detects and
navigates to so-called meet-points. Meet-points correspond to intersections, cor-
ners, and dead-ends (see also [13]). We conjecture that a combined algorithm, using
Choset’s approach for exploration and meet-point detection and our approach for
mapping, would yield an algorithm for fully autonomous exploration and mapping.

One interesting extension would be to apply the proposed method to other types
representations, with different sensor models. The perceptual model used here,
which is based on landmarks, is just one choice out of many possible choices. A
different choice would be the probabilistic sensor model described in [4, 3], which
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specifically applies to proximity sensors, such as sonars or laser range finders.
The inverse sensor model (also called sensor interpretation), which is employed
in the map building step (M-step), can be realized by the approach described in
[27], where neural networks are used to extract occupancy grid maps from sensor
data. As a result, proximity sensor readings would directly incorporated in the
position estimation, which is currently not the case. Such an approach would also
obliviate the need for landmarks. The extension of the current approach to such
more complex sensor models is subject to future work.
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